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Several authors have proposed studying randomly forced turbulent flows (e.g.,
E. A. Novikov, Soviet Physics JETP, 20(5), 1290 1965). More recently, theoreti-
cal investigations (e.g., renormalization group) have focused on white-noise forced
Navier–Stokes equations (V. Yakhot and S. A. Orszag,J. Sci. Comput.1(1), 3 1986).
The present article aims to provide an appropriate numerical method for the simula-
tion of randomly forced turbulent systems. The spatial discretization is based on the
classical Fourier spectral method. The time integration is performed by a second-
order Runge–Kutta scheme. The consistency of an extension of this scheme to treat
additive noise stochastic differential equations is proved. The random number gen-
erator is based on lagged Fibonacci series. Results are presented for two randomly
forced problems: the Burgers and the incompressible Navier–Stokes equations with a
white-noise in time forcing term characterized by a power-law correlation function in
spectral space. A variety of statistics are computed for both problems, including the
structure functions. The third-order structure functions are compared with their exact
expressions in the inertial subrange. The influence of the dissipation mechanism (vis-
cous or hyperviscous) on the inertial subrange is discussed. In particular, probability
density functions of velocity increments are computed for the Navier–Stokes simu-
lation. Finally, for both Burgers and Navier–Stokes problems, our results support the
view that random sweeping is the dominant effect of the large-scale motion on the
small-scales. c© 1998 Academic Press

1. INTRODUCTION

Turbulence is a non-equilibrium phenomenon: if a turbulent flow is left in a domain
without any external injection of energy, it decays. To prevent this decay and achieve a
statistically steady state in which mean quantities are independent of time, one can impose
boundary conditions on the velocity field. In that case, the flow is inhomogeneous and
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complex. Understanding the properties of such flows remains a major challenge. Another
way to achieve a statistically steady state while preserving homogeneity and eventually
isotropy of turbulence is to add (following Novikov’s suggestion [1]) a random forcing
term in the equations. This forced-dissipative system will give a description of the essential
nonlinear processes in a turbulent fluid divorced from any peculiarities induced by the
boundary or initial conditions.

During the past decades, forced homogeneous turbulence has received much attention.
In the theory of turbulence, methods based on renormalization of diagrammatic expansions
have been investigated thoroughly [2]. The renormalization group (RG) approaches (see,
e.g., [3–8]) belong to the same family of theories. In the field of computer simulations,
since the pioneering work of Orszag and Patterson [9], many simulations of homogeneous
turbulence have been performed. Some of these studies have treated the decay of turbu-
lence from given initial conditions. Others showed results for forced turbulence (see, e.g.,
[10–12]). The forcing is active only in a narrow band of wave-numbers located near the
origin. Different types of forcing terms (deterministic or stochastic) were used. Most of the
authors came to the conclusion that the dynamics of the inertial subrange scales (defined as
the subrange of scales of motion for which the fluid is effectively described by the inviscid
equations), seems to be independent of the exact form of the forcing. Siggia [10] mentioned
that this may be demonstrated, in principle, using a renormalization group analysis.

More recently, simulations of homogeneous turbulence have been performed replacing
the classical Laplacian dissipation by a higher order term [13, 14]. Using this technique, one
hopes to broaden the inertial subrange and obtain solutions closer to high Reynolds number
turbulence while keeping the number of degrees of freedom to a reasonable value. There is
also a theoretical issue related to hyperviscous turbulent flows. Leveque and She [15] have
shown the nonuniversality of the inertial subrange of a Gledzer–Ohkitani–Yamada (GOY)
shell model with respect to the hyperviscosity exponent. This phenomenon may be related,
in RG terminology, to an infinite set of fixed points (Eyink [16]).

The RG method applied to turbulence by Yakhot and Orszag [7] has stimulated the study of
a new type of forced homogeneous turbulence. Their theory predicts critical exponents and
quantities such as the Kolmogorov constant and the velocity derivative skewness (Smith and
Reynolds [17]) for a statistically isotropic flow sustained by white-noise Gaussian stochastic
forcing defined by a power-law covariance operator in Fourier space. According to the
theory, the Kolmogorov–Obukhov−5/3 law for the energy spectrum is recovered when
the forcing correlation functions scale likek−3 in three dimensions (k is the wave-number).
The Yakhot and Orszag theory is based on the postulate that this particular forced-dissipative
model is a good candidate for representing the small-scales of real turbulence. The value of
the Kolmogorov constant,CK = 1.6, predicted by the theory is close to experimental results
which is remarkable in view of the various assumptions used in its derivation. An interesting
feature of the theory is the prediction of an Eulerian energy frequency spectrum which scales
like ω−2 (ω is the time frequency) [18]. This is in contradiction with the classical view of
considering the random sweeping as the dominant interaction between large-scales and
small-scales [19–21]. The work of Yakhot and Orszag leads to an investigation of other
forced-dissipative systems like the random-force-driven Burgers equation [22, 23]. For this
system, a random force with ak−1 power-law covariance operator results in a Kolmogorov
energy spectrum.

The analysis of Yakhot and Orszag raises new important questions on the route towards a
better understanding of homogeneous turbulence. Some of these questions can be answered
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by numerical experiments. Among them, one might ask: What are the statistical properties
of a turbulence with ak−3 force term? Are they close to the properties of large-scale forced
turbulence? (This question has been partially answered by Migdalet al. [24] who were
able to show, using an infrared renormalization, that thek−3 forcing comes as an intrinsic
reaction of turbulence to the large-scale forcing.) Are the quantities predicted by the theory
in good agreement with numerical results? Can we give quantitative evaluations of the
assumptions used in the derivation of the theory (among theses assumptions, one finds the
truncation to second-order corrections of the parameters and the distant interaction limit)?
To answer some of these questions, numerical simulations of randomly forced turbulence
have already been performed [25]. However, a thorough analysis is lacking. (Note that,
randomly forced turbulence appears also in the context of large eddy simulations when the
backscatter effect is represented by a stochastic term [26, 27].)

Therefore, there is a strong motivation for a numerical study of a family of randomly
forced turbulent flows characterized by power-law force correlations. The main point of
this article is to present a numerical method to solve efficiently problems of this family.
In particular, we make use of a Runge–Kutta time marching scheme for additive noise
stochastic differential equations which is second-order accurate in the weak sense (see the
definition of weak convergence in Section 3). The spatial discretization is based on the
classical Fourier spectral algorithm. Due to the Runge–Kutta method, two evaluations of
these terms are necessary per time step. Therefore the dealiasing can be achieved without
any extra cost by a random-shifting technique [28]. Another important issue is the generation
of pseudorandom numbers to build up the stochastic forcing. Two important properties are
required. Firstly, the period of the generator should be large enough to ensure statistically
independent forcing increments. Secondly, we desire a generator which is computationally
efficient on a vector computer. We recommend a generator based on lagged Fibonacci series
which combines both properties [29–31].

Two problems have retained our attention: the one-dimensional Burgers equation and
the three-dimensional incompressible Navier–Stokes equations. Each of them is defined
on a periodic domain (an interval for Burgers and a cube for Navier–Stokes). The viscous
Burgers problem is solved with a resolution of 32,768 modes for a white-noise in time
force with ak−1 power-law correlation function [22, 23]. The viscous and hyperviscous
Navier–Stokes problems are solved with a resolution of 2563 modes for ak−3 forcing term
[7, 25].

The paper is organized as follows. In Section 2, random force turbulent models are
presented for the Burgers and Navier–Stokes equations. The consistency of the second-
order stochastic Runge–Kutta scheme is proved in Section 3. Section 4 deals with the
description of the discretization technique, the random number generator algorithm, and the
computational performances of the Navier–Stokes solver. Various results for the stochastic
Burgers and Navier–Stokes equations are discussed in Section 5. Finally, Section 6 draws
some conclusions.

2. PRESENTATION OF THE PROBLEMS

We consider two problems, namely the Burgers and Navier–Stokes equations with stochas-
tic, white-noise in time, forcing terms. The velocity field, solution of one of these problems,
can be written in the form of an Ito stochastic processv(t)={v(x, t), x ∈D}. Here,t ≥ 0
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andD is the spatial domain. For instance for the one-dimensional Burgers equation, we
have

v(x, t)= v(x, 0)+
∫ t

0

[
−v(x, s) ∂v

∂x
(x, s)+ ν ∂

2v

∂x2
(x, s)

]
ds+

∫ t

0
dw(x, s), (1)

whereν is the kinematic viscosity. The second integral is usually refereed to as the Ito
stochastic integral with respect to the Wiener processw(t) = {w(x, t), x ∈ D}. Recall that
a Wiener process is a stochastic process defined by the three following properties

(i) w(0)= 0;
(ii) w(t) is a continuous function oft ;
(iii) the increments{w(t +1t)−w(t), t ≥ 0,1t > 0} are independent of each other

and have a Gaussian probability distribution with a zero mean and a variance of the form
〈(w(x′, t +1t)−w(x, t))2〉=1t F(x, x′) where the symbol〈·〉 denotes the ensemble av-
erage andF(x, x′) is the covariance function.

The integral equation (1) may be written in its differential form

dv(x, t) = −v(x, t) ∂v
∂x
(x, t) dt + ν ∂

2v

∂x2
(x, t) dt + dw(x, t),

or in the more common form

∂v

∂t
(x, t)+ v(x, t) ∂v

∂x
(x, t) = ν ∂

2v

∂x2
(x, t)+ f (x, t), (2)

where f (x, t) is the so-called white-noise force term and is the generalized derivative of
the Wiener processw(x, t).

Due to point (iii) in the above definition, the white-noise is not continuous in time and the
classical Taylor expansion analysis used to prove the consistency of numerical approxima-
tion schemes does not apply to this kind of equation. Nevertheless, various schemes have
been designed for stochastic differential equation based on an Ito–Taylor expansion [32].
Section 3 is devoted to this subject.

We will also consider replacing the normal Laplacian dissipation

ν
∂2v

∂x2
(x, t),

by a higher power of the Laplacian

(−1)h+1νh
∂2hv

∂x2h
(x, t),

whereh is an integer. The hyperviscous dissipation concentrates the energy sink at the
small-scales leading to an enhanced inertial subrange. In addition to this practical motivation
for studying hyperviscous systems, there is also a theoretical interest as mentioned in the
Introduction.

The aim of the two sections below is to state precisely the different problems treated in
this article. Essentially, we specify the two-point correlation functions of the forcing terms
in spectral space and in physical space for an infinite domain. Afterwards, we show that the
length scale associated with the external forcing allows us to define an approximate discrete
finite-size problem.
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2.1. Burgers

In physical space, the Burgers equation is given by Eq. (2). We will consider the homoge-
neous case where the domainD= ]−∞, +∞[ and 0≤ t <+∞ (the intial condition being
v(x, 0)= 0). According to the following Fourier transform

v̂(k, t) =
∫ +∞
−∞

v(x, t) e−ikx dx,

v(x, t) = 1

2π

∫ +∞
−∞

v̂(k, t) eikx dk,

the equation reads, in spectral space,

(
∂t + νk2

)
v̂(k, t) = f̂ (k, t)− ik

2(2π)

∫ +∞
−∞

v̂(p, t)v̂(k− p, t) dp. (3)

This equation will be restricted to the wave-number domainDr ={k∈D | ko≤ |k| ≤ kd}
whereko andkd designate the infrared and the ultraviolet cutoffs, respectively. The ultravi-
olet cutoff is taken in the range of wave-numbers where the dynamics is dominated by the
viscous dissipation.

In the subsequent paragraphs, we define different quantities such as the mean energy and
the mean dissipation rate. Afterwards, we specify the external forcing and its relation with
the mean dissipation rate. We will show that its correlation length scale is smaller than the
domain size of the discrete problem. Finally, in the last paragraph, we discuss briefly the
meaning of the limit caseko→ 0.

For problem (2), the mean energyE(t) and the mean dissipation rateε(t) defined respec-
tively by

E(t) = 1

2
〈v(x, t)2〉, and ε(t) = ν

〈(
∂v(x, t)

∂x

)2
〉
,

are related by the equation

d E(t)

dt
= 1

4(2π)2

∫
Dr

dk
∫
Dr

dk′[〈 f̂ (k, t)v̂(k′, t)〉 + 〈 f̂ (k′, t)v̂(k, t)〉] − ε(t).

This equation is deduced from (3). Since the velocity field is assumed to be statistically ho-
mogeneous, the mean quantities do not depend on the space variable. Assuming that, after a
timet∗> 0, the system reaches a statistical steady state, we have, for allt > t∗, d E(t)/dt= 0
and

ε = 1

4(2π)2

∫
Dr

dk
∫
Dr

dk′[〈 f̂ (k, t)v̂(k′, t)〉 + 〈 f̂ (k′, t)v̂(k, t)〉]. (4)

The forcing term is defined by the following correlation function

〈 f̂ (k′, t ′) f̂ (k, t)〉 = (2π)F̂(k)δ(k+ k′)δ(t − t ′) for k ∈ Dr , (5)
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FIG. 1. Two-point correlation functions of the stochastic forcing: (a) Burgers; (b) Navier–Stokes.

whereF̂(k)= 2D|k|−1 andD= D(ε, ko, kd) is a function ofε, ko, andkd. Using Novikov’s
theorem [1]

〈 f̂ (k, t)v̂(k, t)〉 = 2π

2
δ(k+ k′)F̂(k),

and by virtue of Eq. (4), we find

D(ε, ko, kd) = 2πε

ln(kd/ko)
and F̂(k) = 2πε|k|−1

ln(kd/ko)
. (6)

In physical space, the two-point correlation function of the forcing is defined by

〈 f (x + r, t + τ) f (x, t)〉 = F(r )δ(τ ),

where the functionF(r ) is the inverse Fourier transform ofF̂(k) given by

F(r ) = 2ε(ci(kdr )− ci(kor ))

ln(kd/ko)
, (7)

where ci(·) denotes the cosine integral. Figure 1(a) shows the functionF(r ) for ko= 1,
kd= 16,384, andε= 10 which are approximately the values used in the simulation (see
Subsection 5.1). The functionF(r ) is very sharp nearr = 0(F(0)= 20). The maximum
amplitude betweenπ and 2π is very small compared toF(0); this means that the correlation
of the forcing forr >π is weak and a simulation performed in a finite periodic domain of
size 2π will be a good approximation of the original problem defined on an infinite size
domain.

It is interesting to consider the limitko→ 0 while ε is kept constant. In that limit
F(r )= F(0)= 2ε and the differential length scale associated to the forcing

λ f =
(
− F(0)

2F ′′(0)

)1/2

=
(

ln(kd/ko)

k2
d − k2

o

)1/2

,

is infinite. This is the Burgers equivalent for Novikov’s turbulence [1] (see the definition of
Novikov’s turbulence in Subsection 2.2). In spectral space, one can easily show that

F̂(k) = 2εδ(k). (8)
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Therefore the forcing is singular in this limit. Thek−1 forcing can be interpreted as a
regularization of an infrared divergent forcing. In that context,ko is the regularization
parameter. The regularized forcing has a finite characteristic length scale which allows us
to restrict ourselves to a finite size domain as shown in the previous paragraph. We notice
that since the modek= 0 does not exchange energy with other modes, the Burgers equation,
along with the forcing (8), will accumulate energy in the zero wave-number and the cascade
of energy across wave-numbers will not take place. The caseko→ 0+ whereko> 0 is more
interesting. The behavior of this system depends on the regularization procedure and is
fundamentally different from the pureδ(k) forcing case since it corresponds to a constant flux
of energy across the wave-numbers. The limit caseko→ 0+ is an anomaly in the terminology
of field theory. It has been shown by Chekhlov [33] both theoretically, using second-order
RG approximations, and experimentally, in a simulation with hyperviscous dissipation,
that the regularizedk−1 forced problem shows also a scale-invariant Kolmogorov−5/3
spectrum. (Note that, for the Burgers problem defined on a finite size domain, it is known
that a constant energy flux solution, obtained by injecting energy at low wave-numbers,
leads to ak−2 spectrum.)

2.2. Navier–Stokes

The Navier–Stokes problem is the generalization of the Burgers problem in three dimen-
sions with, in addition, a pressure term and the incompressibility constraint,

∂vα

∂t
(x, t)+ vβ(x, t) ∂vα

∂xβ
(x, t) = fα(x, t)− ∂p

∂xα
(x, t)+ ν ∂2vα

∂xβ∂xβ
(x, t),

∂vα

∂xα
(x, t) = 0.

In this equation,vα(x, t) (α= 1, 2, 3) andp(x, t) are respectively the velocity and pressure
fields, fα(x, t) is the white-noise forcing, and the summation convention of repeated indices
has been applied. The problem is defined on the domainD= ]−∞, +∞[3 and for 0< t <∞
with the initial conditionvα(x, 0)= 0. Given the following Fourier transform

v̂α(k, t) =
∫
D
vα(x, t) e−i k·x d3x,

vα(x, t) = 1

(2π)3

∫
D
v̂α(k, t) ei k·x d3k,

one may write the Navier–Stokes equations in spectral formulation

(
∂t + νk2

)
v̂α(k, t) = f̂ α(k, t)−

i

2(2π)3
Pαβγ (k)

∫
D
v̂β( p, t)v̂γ (k− p, t) d3 p,

where

Pαβγ (k) = kβPαγ (k)− kγ Pαβ(k),

and

Pαβ(k) = δαβ − kαkβ/(kγ kγ ). (9)
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The projectorPαβ(k) eliminates the pressure. As for the Burgers problem, we restrict the
wave-number domain toDr ={k ∈ D | k= (kαkα)1/2 ∈ [ko, kd]}.

The force term is defined by the following correlation functions

〈 f̂ α(k′, t ′) f̂ β(k, t)〉 = (2π)3Pαβ(k)F̂(k)δ(k+ k′)δ(t − t ′),

whereF̂(k) = 2D|k|−3. If we assume that after a timet∗, the system reaches a statistically
steady state,D can be related toε, ko, andkd using Novikov’s theorem [1]. For the Navier–
Stokes problem, the mean dissipation rate is defined by

ε = ν
[

2

〈(
∂v1

∂x1

)2
〉
+ 2

〈(
∂v2

∂x2

)2
〉
+ 2

〈(
∂v3

∂x3

)2
〉
+
〈(

∂v2

∂x1
+ ∂v1

∂x2

)2
〉

+
〈(

∂v3

∂x2
+ ∂v2

∂x3

)2
〉
+
〈(

∂v1

∂x3
+ ∂v3

∂x1

)2
〉]

.

We find the following expressions forD andF̂

D(ε, ko, kd) = π2ε

ln(kd/ko)
, and F̂(k) = 2π2ε|k|−3

ln(kd/ko)
. (10)

In physical space, the two-point correlation functions of the forcing term are given by

〈 fα(x+ r, t + τ) fβ(x, t)〉 = Fαβ(r)δ(τ ), (11)

where

Fαβ(r) = (FLL(r )− FN N(r ))
rαrβ
r 2
+ FN N(r )δαβ,

FLL andFN N are respectively the longitudinal and the lateral force correlations [34]. The
inverse Fourier transform of̂F(k) gives

FLL(r ) = 2ε

3 ln(kd/ko)

[
cos(kdr )rkd − sin(kdr )r 2k2

d − sin(kdr )+ ci(kdr )r 3k3
d

r 3k3
d

− cos(kor )rko − sin(kor )r 2k2
o − sin(kor )+ ci(kor )r 3k3

o

r 3k3
o

]
, (12)

and

FN N(r ) = ε

3 ln(kd/ko)r 3k3
dk3

o

[
k3

o sin(kdr )+ k3
d cos(kor )rko + 2k3

d sin(kor )r
2k2

o

+ 2k3
o ci(kdr )r 3k3

d − k3
d sin(kor )− k3

o cos(kdr )rkd

− 2k3
o sin(kdr )r 2k2

d − 2k3
d ci(kor )r

3k3
o

]
.

Figure 1(b) showsFLL andFN N for ko= 1, kd= 120, andε= 0.15 which are approximately
the values used for the simulations (see Subsection 5.2). The amplitudes ofFLL andFN N

do not exceed a few percent ofFLL(0) andFN N(0) in the interval [π, 2π ]. Therefore the
restriction of the domain to a periodic cubic box of volume(2π)3 is valid.



             

254 MACHIELS AND DEVILLE

The remark of the last paragraph, Subsection 2.1, applies also to the Navier–Stokes
problem. In particular the correlation function of the forcing, whenko→ 0 whileε is kept
constant, is

Fαβ(r) = 2ε

3
δαβ.

The turbulence driven by this random forcing has been introduced by Novikov [1] and is
referred to as Novikov’s turbulence. Like for the Burgers problem, an external length scale
λ f characteristic of the forcing may be defined as

λ f =
(
− Fαα(0)

2F ′′ββ(0)

)1/2

.

It is easy to show that whenko→ 0, λ f →∞.

3. A RUNGE–KUTTA SCHEME FOR ADDITIVE NOISE PROBLEMS

In this section we derive a second-order Runge–Kutta scheme for the numerical integra-
tion of an equation of the type

dy(t) = a(t, y(t)) dt + B(t) dw(t), (13)

wherey(t), a(t, y(t)) areM-dimensional vector valued functions,B(t) is a M ×M matrix
valued function, andw(t) is a M-dimensional standard Wiener process. This equation
may represent either the Burgers or the Navier–Stokes equations discretized in space. For
instance, let us consider Eq. (3). We define{km | m= 1, . . . ,M} the discrete set of wave
numbers. The vectory is defined by

ym(t) = v̂(km, t) exp
(
νk2

mt
)
.

The reader will note that we use the integrating factor exp(νk2
mt) to eliminate the linear

viscous term in the equation. The functiona(·, ·) is the nonlinear term

am( y(t), t) = − ikm exp
(
νk2

mt
)

2

∑
kp+kq=km

v̂(kp, t)v̂(kq, t),

while the matrixB(t) is defined by the relation

Bmp(t)dwp(t) = f (km, t) exp
(
νk2

mt
)
,

where f (km, t) is the stochastic forcing defined by Eqs. (5) and (6).
For the sake of completeness, we shall present the Ito formula and the notion of weak

convergence related to the numerical approximation of stochastic differential equations.
More precisely, the usual Taylor expansion, used to demonstrate the consistency of clas-
sical integration schemes can be extended to stochastic differential equations by iterated
applications of the Ito formula to form the Ito-Taylor series. Then, the series is truncated
according to the order and the type of convergence (weak in our case) required. A com-
plete presentation on the numerical approximations of stochastic differential equations is
provided in Kloeden and Platen [32].
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The problem is to build, from a vectory(t), an approximation ofy(t +1t) where1t is
the time step. One can always write

y(t +1t) = y(t)+
∫ t+1t

t
a(s, y(s)) ds+

∫ t+1t

t
B(s) dw(s), (14)

where the second integral is the Ito integral. To expand the increments of smooth functions
of Ito processes (such as

∫
a(s, y(s)) ds) in the construction of numerical methods, it is

advantageous to have a stochastic expansion formula with analogous properties to the
deterministic Taylor formula. Such expansion may be obtained by iterated application of
the Ito formula and is called the Ito–Taylor expansion. We recall the Ito formula [32] for an
arbitrary functionc(s, y(s)) of the solutiony(s) of Eq. (13) (we takes> t)

cl (s, y(s))

= cl (t, y(t))+
∫ s

t
∂i cl (σ, y(σ ))Bi j (σ ) dw j (σ )+

∫ s

t
∂i cl (σ, y(σ ))ai (σ, y(σ )) dσ

+ 1

2

∫ s

t
∂i ∂kcl (σ, y(σ ))Bi j (σ )Bkj (σ ) dσ +

∫ s

t
∂t cl (σ, y(σ )) dσ. (15)

The notations∂i and∂t represent the partial derivatives∂/∂xi and∂/∂t , respectively. We
apply this formula recursively to expand the functiona(s, y(s)) in Eq. (14). The simplest
nontrivial Ito–Taylor expansion is given in the Appendix as an illustration. To order the
terms of the expansion, we introduce the following notation. We define a multi-indexα =
(α1, . . . , α3) such thatαi ∈ {0, 1, . . . ,M};3(α) = 3 is the length of the multi-index. We
writeα− for the multi-index obtained by deleting the last component. Then we define the
multiple Ito integralIα[c(·)]t,s of an arbitrary functionc(t) recursively by

Iα[c(·)]t,s =


c(s) if 3 = 0,∫ s
t Iα− [c(·)]t,σ dσ if 3≥ 1 andα3 = 0,∫ s
t Iα− [c(·)]t,σ dwα3(σ ) if 3≥ 1 andα3≥ 1.

The Ito–Taylor expansion ofy(t +1t) may be written in the general form

y(t +1t) =
∑
α

Iα[Cα(t, y(t))]t,t+1t , (16)

where the functionsCα(·, ·) are called Ito coefficient functions. Following Proposition 1
(see Appendix), we drop the integrals such that3(α) > 2. We find

ỹl (t +1t) = yl (t)+
∫ t+1t

t
Bl j (s) dw j (s)+ al (t, y(t))1t + ∂tal (t, y(t))

1t2

2

+ ∂i al (t, y(t))
∫ t+1t

t

∫ s

t
Bi j (σ ) dw j (σ ) ds

+ 1

2
∂i ∂kal (t, y(t))

∫ t+1t

t

∫ s

t
Bi j (σ )Bkj (s) dσ ds

+ ∂i al (t, y(t))ai (t, y(t))
1t2

2
. (17)
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The approximation is consistent to second-order in the weak sense,

|〈g( y(t +1t))〉− 〈g( ỹ(t +1t))〉| = O(1t3),

whereg(y) is any real-valued function six times continuously differentiable for whichg(y)
and all its partial derivatives of order up to and including six have polynomial growth. Essen-
tially, the weak order of convergence yields the rate of convergence of all the polynomial-
form statistics of the approximate solution towards the same statistics of the true solution.
Therefore, weak convergence is adequate for many applications including ours.

Using the Taylor expansion ofB(s) in Eq. (17), we can write

yl (t +1t) = yl (t)+ Bl j (t)I
(1)
j + al (t, y(t))1t + ∂t Bl j (t)I

(2)
j

+ ∂i al (t, y(t))Bi j (t)I
(3)
j +

1

4
∂i ∂kal (t, y(t))Bi j (t)Bkj (t)1t2

+ 1

2
∂i al (t, y(t))ai (t, y(t))1t2+ 1

2
∂tal (t, y(t))1t2+ O(1t3),

where the integrals are given by

I (1)j =
∫ t+1t

t
dw j (s), I (2)j =

∫ t+1t

t

∫ s

t
dσdw j (s),

I (3)j =
∫ t+1t

t

∫ s

t
dw j (σ ) ds.

Now we have to focus on evaluating consistently the integralsI (1)j , I (2)j , andI (3)j . Accord-

ing to formula (5.12.9) in [32], we approximateI (1)j ≈ ξ j1t1/2 andI (2)j ≈ I (3)j ≈ 1t3/2ξ j /2
whereξ j is a standard Gaussian random variable.

Finally, we propose the approximation

ȳl (t +1t) = yl (t)+ 1

2

(
κ
(1)
l (t)+ κ(2)l (t)

)
,

κ
(1)
l (t) = al (t, y(t))1t + Bl j (t)ξ j1t1/2,

κ
(2)
l (t) = al

(
t +1t, y(t)+ κ(1)(t))1t + Bl j (t +1t)ξ j1t1/2.

It is easy to show, using the Taylor expansions ofa(t +1t, y(t)+κ(1)(t)) andBl j (t +1t)
aboutt andy(t) and our previous calculation that this approximation is consistent to second-
order except that we get

1

4
∂i ∂kal (t, y(t))Bi j (t)ξ j Bkm(t)ξm1t2,

instead of the term

1

4
∂i ∂kal (t, y(t))Bi j (t)Bkj (t)1t2.

But since,〈(δ jm−ξ j ξm)
2〉 = 0, the above term does not modify the order of the approxima-

tion. When this approximation is used as an integration scheme for Eq. (13) supplemented
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with an initial conditiony(0) = y0, and provided that this scheme is stable for the particular
problem, after an arbitrary number of iterations, sayn, it gives an approximate solution
y(n) which is such that|〈g(y(n))〉 − 〈g( y(n1t))〉| = O(1t2). This scheme is the vectorial
additive noise version of the Runge–Kutta scheme proposed by Petersen [35].

4. NUMERICAL METHODS

In this section, we present some details about the algorithms, their implementation, and
their computational performances. After a few words about the stability of the temporal in-
tegration scheme in Subsection 4.1, we briefly recall, in Subsection 4.2, the random shifting
procedure used to remove aliased interactions. The random number generator is discussed
in Subsection 4.3. Finally, Subsection 4.4 gives the main important figures concerning the
computational performance of the Navier–Stokes solver.

4.1. Time Discretization

The time discretization method is based on the second-order Runge–Kutta algorithm pre-
sented in Section 3. The linear diffusion term is treated with an integrating factor. Hereafter,
we study the linear stability of this scheme in order to provide an estimate of the time step
upper bound as a function of the maximum velocityvmax, the spatial resolutionN (N is
the number of modes of the Fourier expansion in one spatial direction), and the kinematic
viscosityν. The linear model-equation under consideration reads

dv

dt
(t) = − i vmaxN

2
v(t)− νN2

4
v(t).

This equation represents the evolution of the amplitude of the velocity for the modeN/2
which is the worst case since it corresponds to the highest eigenvalue. For this equation, the
integrating factor is exp(νN2t/4). Therefore we define

y(t) = v(t) exp
(
νN2t/4

)
,

and the equation fory(t) is

dy

dt
(t) = − i vmaxN

2
y(t).

The calculation of the amplification factor of the second-order Runge–Kutta scheme for
this problem (in the limit of small1t) leads to

|yn+1| ≤ exp

(
N4v4

max1t4

128

)
|yn|,

where1t is the time step andyn is the approximation ofy(n1t). Going back to the original
problem, we have now

|vn+1| ≤ exp

(
N4v4

max1t4

128
− νN21t

4

)
|vn|,
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which gives the stability condition

1t ≤ (32)1/3
(

ν

v4
maxN

2

)1/3

.

If an hyperviscosity is used, the condition becomes

1t ≤
(

128

22h

)1/3(
νhN2h−4

v4
max

)1/3

.

For comparison, if, instead of the second-order Runge–Kutta scheme, we use a second-order
Adams–Bashforth method, the condition is

1t ≤ (16)1/3
(

ν

v4
maxN

2

)1/3

.

Since the Runge–Kutta method requires two evaluations of the nonlinear terms per time
step while the Adams–Bashforth algorithm needs only one, it seems more advantageous to
use the Adams–Bashforth scheme. Nonetheless, as we will show in the next paragraph, the
dealiasing can be achieved at no extra cost for the Runge–Kutta scheme by using a random
shifting method, while for the Adams–Bashforth technique the standard shifting method
requires an extra evaluation of the nonlinear terms per time step.

Finally, the reader may raise the question: Does the stochastic term influence the numerical
stability properties of the scheme? In our case, we can show easily that the amplification
factor is the same as the one for the corresponding deterministic equation. Consequently,
the linear stability constraint of the deterministic problem is also valid for the stochastic
one.

4.2. Spatial Discretization

In a simulation of homogeneous turbulence, the spatial resolution is chosen accordingly
to the characteristic length scale of the dissipative subrange (defined as the scales of motion
for which the viscous effects are dominant):

lv =
(
ν3

ε

)1/4

.

This length scale is referred to as the Kolmogorov length scale. With a resolution such that
kd ≈ kv = 1/ lv we expect to have a good representation of the inertial subrange scales. If
a hyperviscous dissipation is used instead of the normal viscosity, the Kolmogorov length
scale is defined by

lv =
(
ν3

h

ε

) 1
6h−2

. (18)

The spatial discretization method is the Fourier spectral method (Canutoet al.[28]). The
nonlinear terms are evaluated by a pseudospectral procedure. The aliasing errors are reduced
by the random shifting technique suggested by Rogallo [36]. Since the time differencing
scheme is a second-order Runge–Kutta, at each time step we have two evaluations of a
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convolution product of the form

ŵk =
∑

m+n=k

ûmv̂n.

Instead of evaluating this product by the standard pseudospectral algorithm, one introduces
a phase shift1 in the discrete Fourier transform:

u′j =
N/2−1∑

k=−N/2

ûkeik(2π j/N+1), v′j =
N/2−1∑

k=−N/2

v̂keik(2π j/N+1),

ŵ′k =
1

N

N−1∑
j=0

u′j v
′
j e
−ik(2π j/N+1).

At the first stage of the Runge–Kutta algorithm, we take1=11= 2πu/N, with u a ran-
dom variable uniformly distributed on the interval [0, 1[. For the second stage, we fix
1=11+π/N. As a result, the aliasing error is reduced, at the end of one Runge–Kutta
step, by a factor of the orderO(1t2) compared to the pure pseudospectral aliasing error.
The random variable in the definition of the phase shift ensures that the aliasing errors
are uncorrelated from step to step. For three-dimensional problems, the random shifting
method reduces the singly aliased interactions. The doubly and triply aliased interactions
are dropped by the spherical truncation of modes

k2
1 + k2

2 + k2
3 > k2

max=
2N2

9
. (19)

4.3. The Stochastic Forcing

In this section we address the problem of choosing an appropriate method to generate
pseudorandom numbers for the construction of the stochastic forcing. Due to the resolution
we want to achieve for the stochastic Navier–Stokes problem (N3= 2563) two fundamental
properties are required. Firstly, the generator should be able to produce huge sequences of
independent random numbers: at each time step, we have to compute three arrays of 2563

random numbers and, since the number of time steps for a typical simulation is 50,000,
the period of the random number generator must be greater than 2.517× 1012. Secondly,
since we generate 2563 random numbers per time step, the computational performance of
the generator is also a critical issue and has to be optimal on a vector computer which is the
machine architecture we use.

A survey of the theory and the more common techniques for testing a uniformly distributed
random number generator may be found in Knuth [37]. A more recent review of the usual
generators with a discussion about the implementation of random number generators on
vector computers is given by Anderson [29]. The most common method to generate ran-
dom numbers is the linear congruential generator. As an example of such kind of generator,
we consider the so-called GGL generator [38] given by the formulaxn= (16807× xx− 1)

mod(231− 1). This generator has a full periodp= 231− 1≈ 2.147× 109 which is too short
for our problem. Moreover, the algorithm is sequential and cannot be efficiently imple-
mented on a vector computer. In order to show the importance of the period, we have
performed a Navier–Stokes simulation with a short period generator. Clearly, one can see
the repetition of the same pattern in the evolution of kinetic energy reported in Fig 2. The



             

260 MACHIELS AND DEVILLE

FIG. 2. Time evolution of the kinetic energyE(t) for a randomly forced Navier–Stokes simulation with a
short period random number generator.

resolution of the simulation isN3= 1283 and the period of the random number generator
is p≈ 2.097× 109.

Instead of linear congruential generator, we use an algorithm based on lagged Fibonacci
series:

t = xn−p + xn−q,

xn = t − float(int(t)).

This generator has been implemented by Petersen [30, 31] on the NEC SX-3 and SX-4 with
the lags(p,q)= (273, 607) chosen on the basis of performance (NEC computers have a
vector length ofL = 256) and because this method generates a sequence of very long period
(p≈ 10191 on 32-bit mantissa computers). About the quality of the random sequence, the
generator went successfully through a suite of tests performed by Petersen [31]. Finally, we
notice that the lagged Fibonacci series has to be initialized by a sequence of 607 random
numbers. We have used the GGL generator presented above as an initializer with the seed
s= 667790 (this generator has also been tested extensively).

4.4. Computational Performances of the Navier–Stokes Solver

The Navier–Stokes program was run on two different NEC computers in the following
configurations: (i) the NEC SX-3 for which one vector unit has a peak performance of
6.4 Gflops and a maximum available memory of 1 Gbyte; (ii) the NEC SX-4 with a maximum
available memory for a job running on a single processor of 1.5 Gbytes and a single processor
peak performance of 2 Gflops. The main memory of these two computers is supplemented by
an eXtended Memory Unit (XMU). The maximum resolution one can achieve is constrained
by the memory requirements of the algorithm. Each scalar field is stored in one array. The
Runge–Kutta scheme implemented for the Navier–Stokes problem needs at least eight
arrays (the Runge–Kutta algorithm needs at least three vector fields, therefore, in three
dimensions nine scalar fields are required; however, one of them can be eliminated using
the incompressibility constraint), to which we have to add two extra arrays to store the
stochastic forcing (again, the third component of the forcing is not required by virtue of
the incompressibility constraint). All of the figures we give in this paragraph are relative
to a typical 2563 run on one processor. For that resolution, one array requires 128 Mbytes.
Therefore we keep six arrays in the main memory while the other four arrays are sent to the
XMU. The computational performance of the solver is 1.5 Gflops on the NEC SX-3 and
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1 Gflops on the NEC SX-4. One time step iteration consumes 14.7 s on the NEC SX-3 and
20.5 s on the NEC SX-4. The time step is1t = 10−3 (for the normal Laplacian dissipation)
and the turnover time isτE ≈ 2.02. Therefore a complete turnover time takes approximately
8.2 h on the NEC SX-3 and 11.5 h on the NEC SX-4.

5. RESULTS

This section is devoted to the presentation the numerical results obtained for the stochastic
Burgers and Navier–Stokes problems defined in Section 2. For both problems, the third-
order structure functions are compared with their exact expressions in the inertial subrange.
For the Burgers equation with a normal Laplacian diffusive term (h= 1), we reproduce
some of the results obtained by Chekhlov and Yakhot [22, 23]. The agreement is very good
though, in their work, they have used hyperviscosity (h= 6) to broaden the inertial subrange.
An interesting conclusion is that, contrary to the system treated by Leveque and She [15],
the statistical properties of the inertial subrange of the Burgers problem is independent of the
dissipation mechanism. We also computed temporal structure functions. Our results show
that random sweeping is the dominant effect, i.e., the so-called random Taylor hypothesis
is valid for this system. Concerning the Navier–Stokes simulations, we have performed two
calculations: one with a normal Laplacian dissipation and another one with a hyperviscous
dissipation. The energy spectra present some remarkable differences even if the probability
density functions of the velocity increments for the two simulations are almost identical in
the inertial subrange. Finally, we show that, for this problem, the Eulerian energy frequency
spectrum agrees also with the random Taylor hypothesis.

Before starting, we shall comment on the averaging methods we use in practice and their
connection with the ensemble average used in the theoretical discussion. The estimation of
statistical quantities is a central question in the theory of stochastic processes. The main
concept is the one of ergodicity: a time (resp. space) ergodic random function is such that the
time average (resp. volume average) of a given instantaneous quantity converges towards
the ensemble average of that quantity as the time interval (resp. volume) on which the
average is taken goes to infinity. An obvious necessary condition for this property is that
the random function should be stationary (resp. homogeneous). The problems described in
Section 2 are homogeneous since the domain and the forcing are taken to be homogeneous.
Moreover, the solutions are assumed to reach a statistical steady state after a finite timet∗.
However, this condition is not sufficient. An example of a sufficient condition is given by
the Slutsky’s theorem (see, e.g., Papoulis [39]): a stationary random functiona(t) which is
such that its autocorrelation functionR(τ )=〈a(t + τ)a(t)〉 satisfies

1

T

∫ T

0
R(τ ) dτ → 0, whenT →∞,

is mean ergodic (the time average ofa(t) is an unbiased estimator of the mean ofa(t)).
A similar theorem holds for volume average of homogeneous random functions.

In practice, ergodicity will be assumed. Most of our statistics are spatial averaged or
shell averaged estimators (i.e., we average on a shell of wave-numbers in spectral space
for multi-dimensional problems). When it is possible, time averages are used in addition to
improve the estimation. The integral of the time average is discretized with a time step of
the order of the decorrelation time of the velocity autocorrelation (turnover time) so that it
resembles an ensemble average between weakly correlated realizations.
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TABLE I

Parameters of the Stochastic Burgers Calculation

N 1t T ν E ε ko kd

32768 5× 10−6 8.1575 1× 10−5 1.680 8.660 1 16384

5.1. Burgers

The parameters of the simulation are reported in Table I whereN is the number of modes,
1t is the time step,T is the total time of integration,ν is the kinematic viscosity,E andε
are respectively the mean kinetic energy and the mean dissipation rate, andko andkd are the
infrared and the ultraviolet cutoffs. Figure 3 shows the time evolution of the space averaged
kinetic energyE(t) and dissipation rateε(t) (E andε in Table I are the time averages of
E(t) andε(t), respectively). From Fig. 3, we can fixt∗ = 1 such that, fort > t∗, the flow is
considered to be statistically stationary. Even if the quantities are averaged on the spatial
domain, they remain very fluctuating. The time scale of the largest fluctuations ofE(t)
are of the order ofT/16, therefore we expect bad time averaged estimations of quantities
relative to the large-scale dynamics. Nevertheless, most of the statistics estimated in the
following are relative to the intermediate-scale dynamics (the inertial subrange) for which
the sample is large enough. A detailed inspection of Fig. 3 shows some coherence between
the fluctuations of energy and dissipation rate. For instance, the “burst” 1< t < 1.5 in
Fig. 3 (a) is followed by the narrower event at timet ≈ 1.5 in graph (b); the same kind of
behavior, in the direction of a weaker amplitude, is observed for 7< t < 7.5 for the energy
andt ≈ 7.4 for the dissipation rate.

The instantaneous velocity field at timet = 4 is represented on Fig. 4. The solution consists
in a set of randomly distributed backward pseudoshocks. Recall that due to the viscous
term present in the equation, the solution remains smooth. In the literature these “smooth”
singularities are sometimes referred to as near singularities or pseudoshocks. Magnifications
of the solution, given by Figs. 4(b) and 4(c), illustrate the structure of the solution. The shocks

FIG. 3. Time evolution of the kinetic energyE(t) and the dissipation rateε(t).
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FIG. 4. Solutionv(x, t) of the stochastic Burgers problem at timet = 4. The magnifications illustrate the
structure of the solution.

are present in many scales (the amplitude of a shock defines its scale). The smallest ones
are clearly smoothed by the viscous diffusion. The large-scale shocks are very persistent
structures and they move with a small velocity which is the difference between the velocities
of the shock edges. Figure 5 shows the evolution of a region near a strong shock (in the

FIG. 5. Time evolution of the solutionv(x, t) of the stochastic Burgers problem near a strong shock.
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middle of the figure) by giving the velocity field at three different times. The small-scales
fluctuate strongly during this time interval while the large-scale shock does not evolve very
much. (Note that betweent = 4 andt = 4.1 there are 10,000 time steps.)

The energy spectrum is defined by

E(k) = 1

2

〈|v̂k|2+ |v̂−k|2
〉;

here the symbol〈·〉 denotes the time average. The energy flux reads

5(k) =
∑

k<p<∞
T(p), (20)

whereT(k) is the energy transfer, given by

T(k) = 〈v̂kŵk + v̂−kŵ−k〉, with ŵk = ik
∑

m+n=k

v̂mv̂n.

The energy transfer appears in the energy equation

F̂(k)+ T(k) = 2νk2E(k), (21)

whereF̂(k) is the energy injection spectrum defined in Section 2, Eq. (6). The energy flux
5(k) is the rate of energy transferred by all modes|p|< k to modes|p|> k. The energy
spectrumE(k) and the rescaled energy flux5(k)/ln(k) are represented on Figs. 6(a) and
6(b). The graph shows clearly a subrange of wave-numbers characterized by a energy
spectrumE(k)∝ k−5/3 and a flux5(k)∝ ln (k). If we recall thatF̂(k)∝ k−1, this particular
energy flux is readily obtained from Eq. (21) by neglecting the viscous term. This region of
the spectrum, where the dynamics is dominated by nonlinear effects, is referred to as the
inertial subrange.

It is also interesting to characterize the inertial region in physical space. Let us denote the
velocity increments byδv(x, z)= v(x + z, t)− v(x, t). We define the structure functions
Sn(z) for all integern,

Sn(z) = (−1)n〈(δv(x, z))n〉.

On can find an exact expression forS3(z) provided that we take the size of the domain
L→∞ and the kinematic viscosityν→ 0. The equation is

S3(z) = 6
∫ z

0
F(r ) dr, (22)

whereF(r ) has been defined in Section 2, Eq. (7). Note that ifko→ 0, Eq. (22) becomes
S3(z)= 12εz, which is the Burgers equivalent for the Kolmogorov 4/5-law. By comparing
this exact relation withS3(z) computed from the simulation, we can define a region where
the agreement is good. In this inertial region, the dynamics is independent of the viscosity
and of the size of the domain. Figure 7 givesSn(z) for n= 3, 4, 5, 6, 7 (dotted lines). For
n= 3, the solid line is the theoretical prediction whenL→∞ and ν→ 0. We observe
that forn= 4, 5, 6, 7, Sn(z) ∝ zζn with ζn= 0.950± 0.07. These exponents are due to the
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FIG. 6. (a) Energy spectrumE(k)—the straight line is the linear least-squares fit of the spectrum in the inertial
subrange, its slope is−1.663± 0.007—and (b) compensated spectral energy flux5(k)/ln(k).

FIG. 7. Structure functionsSn(z), for n= 3, 4, . . . ,7 (dotted lines). Forn= 3 (resp.n> 3), the solid line is
the theoretical prediction (resp. the least-squares fits). The slope of the linear least-squares fits fromn= 4 ton= 7:
0.913± 0.002, 0.895± 0.004, 1.010± 0.003, 1.025± 0.003.
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FIG. 8. Structure functionsSn(z), for n= 2, 3, againstR(z) (dotted lines) and their linear least-squares fits
(solid lines). Slope of the linear least-squares fits forn= 2, 3: 0.950± 0.002, 1.043± 0.003.

presence of strong shocks (Chekhlov and Yakhot [23]). If we define

R(z) = 1

2ε

∫ z

o
F(r ) dr,

we can writeS3(z)= 12εR(z). Then, if we plotS2(z) againstR(z) (Fig. 8), we find that
S2(z) ∝ R(z)ζ2 whereζ2= 0.950±0.002. The results of the measurements of the structure
functionsSα(z)=〈|v(x+ z, t)− v(x, t)|α〉 with noninteger exponentsα= 1/3, 2/3, . . . ,
6/3, presented in Fig. 9 are in good agreement withSα(z) ∝ zα/3. The result obtained
for α= 6/3 is consistent withS2(z) ∝ R(z)0.95 since, in the region of interest, we have
approximatelyR(z) ∝ z0.7.

FIG. 9. Structure functionsSα(z), for noninteger exponentsα= 1/3, 2/3, . . . ,6/3 (dotted curves). Slope of
the linear least-squares fits (solid lines) fromα= 1/3 toα= 6/3: 0.1186± 0.0005, 0.234± 0.001, 0.346± 0.001,
0.451± 0.001, 0.550± 0.001, 0.638± 0.001.
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FIG. 10. Structure functionsSt
n(τ ), for n= 4, 5, 6, 7 (dotted lines) and the linear least-squares fit forn= 4

(solid line, slope 0.97± 0.01).

There is also a region in the time domain where the time structure functions

St
α(τ ) = 〈|v(x, t + τ)− v(x, t)|α〉,

behave likeSt
α(τ ) ∝ τ ζ

t
α . ShouldSt

α(τ ) be a function ofτ andε only, a simple dimensional
argument leads to the following scaling prediction

St
α(τ ) ∝ (ετ )α/2. (23)

Figures 10 and 11 show that this equation is not satisfied, which means thatSt
α(τ ) cannot be

a function ofτ andε only. We will show that our results can be easily interpreted in the light

FIG. 11. Structure functionsSt
α(τ ), for noninteger exponentsα= 1/3, 2/3, . . . ,6/3 (dotted curves). Slope of

the linear least-squares fits (solid lines) fromα= 1/3 toα= 6/3: 0.1066± 0.0005, 0.212± 0.001, 0.315± 0.001,
0.415± 0.002, 0.511± 0.003, 0.601± 0.004.
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of the analysis of Tennekes [19], assuming that the sweeping of small-scales by the large-
scales is the dominant interaction. From Fig. 4, we have observed that the number of large
amplitude shocks is small compared to the number of smaller shocks. Large shocks can be
considered as rare events. Moreover, we have seen on Fig. 5 that even if the large shocks
are not evolving very fast, the small shocks move with a nonzero velocity. Consequently,
we assume that, in the mean, the shocks are advected by a velocity field of magnitude
vrms=〈v(x, t)2〉1/2. We fix z in the inertial subrange and defineτ = sign[v(x, t)]z/vrms.
Then we write the following discrete inviscid Burgers equation:

v(x, t + τ)− v(x, t)
τ

≈ −v(x, t)v(x + z, t)− v(x, t)
z

+ 1

τ

∫ t+τ

t
f (x, σ )dσ. (24)

Recall that the covariance of the last term in Eq. (24) is of the orderO(τ−1). If we assume
that the shocks are statistically independent of the background flow, we obtain for the mean
square value of (24)

〈(v(x, t + τ)− v(x, t))2〉
τ 2

≈ v2
rms

〈(v(x + z, t)− v(x, t))2〉
z2

+ F(0)

τ
,

whereF(0)= 2ε (Novikov [1]). We now use the previous result

〈(v(x + z, t)− v(x, t))2〉 ≈ β(εz)2/3, β >0,

and we find that

St
2(τ ) ≈ βv2/3

rms(ετ )
2/3+ 2ετ. (25)

Figure 11 (α= 2) shows thatSt
2(τ ) ∝ τ 0.6, indicating that the random sweeping (the first

term of the right-hand-side of Eq. (25)) is the dominant effect. More generally, we have

St
α(τ ) ∝ Sα(z) with z= vrmsτ.

In Figs. 10 and 11, we observe that this relation is approximately correct since, in our
calculation,vrms≈ 1.833. This result is in contradiction with the conclusion of Chekhlov
and Yakhot [22] and with the RG prediction (Yakhotet al. [18]) where it is argued that,
in a randomly forced system such as the one we are studying, random sweeping does not
contribute to the decorrelation.

5.2. Navier–Stokes

Two simulations have been performed for the following Navier–Stokes problem

∂v
∂t
+ vβ ∂v

∂xβ
= f −∇ p+ (−1)h+1νh∇2hv,

∇ · v = 0,

wheref (x, t) is defined by the covariance given by Eq. (11), andνh is the hyperviscosity
parameter. In the first simulation,h= 1 and the dissipative term is the usual Laplacian. For
the second simulation, in order to increase the size of the inertial subrange, we have chosen
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h> 1. Following the work of Borue and Orszag [13], we useh= 8. The coefficientsνh

and the dissipation rateε are fixed so that the Kolmogorov wave-numberkv = 1/ lv remains
smaller thankmax (see the definition oflv, Eq. (18), andkmax, Eq. (19)).

We recall here the definition of some characteristic quantities (see, e.g., Batchelor [40])
to be used in the following. The energy spectrum is given by

E(k) = 1

2

∑
k−1/2<|p|≤k+1/2

〈|v̂( p, t)|2〉,

for all integer 0≤ k≤ kd. We define two length scales: the integral length scale

L =
∑kd

k=0 k−1E(k)∑kd
k=0 E(k)

,

which is the distance over which there is an appreciable correlation between the values of
the velocity field at two points, i.e., roughly speaking the size of the largest structures in the
flow; the differential or Taylor microscale

λ =
( ∑kd

k=0 E(k)∑kd
k=0 k2E(k)

)1/2

,

which is the curvature of the spatial velocity autocorrelations at the origin. The Taylor
microscale is smaller than the integral scale and is related to the average of the scales
belonging to the inertial subrange. The time scale associated to the integral scale is the eddy
turnover time

τE = L/vrms,

wherevrms is the root-mean-square velocity defined byvrms= (2E/3)1/2. Finally, s3 and
s4 are, respectively, the velocity derivative skewness and flatness defined by the general
relation

sn = 〈(∂v1/∂x1)
n〉

〈(∂v1/∂x1)2〉n/2 .

The main features of both simulations are reported in Tables II and III. The integral
scaleL remains much smaller than the half-size of the box and we expect limited finite
size effects. The Taylor microscaleλ is smaller in the hyperviscous case, which indicates
that the inertial subrange is likely to be larger in that case. Our values fors3 ands4 are
significantly smaller in absolute value compared to the results obtained by other authors
[11, 12] for low wave-number forced turbulence.

Figure 12 represents the time evolution of the energyE(t) and the dissipation rateε(t).
These quantities are averaged in space. In the two simulations, the flow can be considered

TABLE II

Simulation Parameters of the Stochastic Navier–Stokes Calculations

N 1t T h νh ko kd

Normal viscosity 256 10−3 50 1 10−3 1 120
Hyperviscosity 256 2× 10−3 60 8 1.38× 10−30 1 120
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TABLE III

Flow Parameters of the Stochastic Navier–Stokes Calculations

E ε L λ τE s3 s4

Normal viscosity 0.415 0.159 1.062 0.162 2.023−0.41 3.821
Hyperviscosity 0.42 0.16 0.956 0.092 1.807−0.293 3.383

statistically stationary for times greater thant∗ = 10. Observe that, contrary to large-scale
forcing simulations, the evolution ofE(t) does not exhibit large-scale intermittency [14]
(which is a typical effect of strong large-scale correlations due to the finite size domain).

The rate of energy transfer is given by the relation

T(k) =
∑

k−1/2<|p|≤k+1/2

〈v̂( p) · P( p)(v̂×w)( p)〉,

wherew=∇× v is the vorticity andP(k) is the projector defined by Eq. (9). The hat over
the velocity fieldv denotes here the discrete Fourier transform. The energy transfer appears
in the energy equation

F(k)+ T(k) = 2νhk2hE(k),

whereF(k)= 4πk2F̂(k) with F̂(k) defined by Eq. (10). Like in the Burgers problem,
Eq. (20) defines the energy flux5(k).

The energy spectrumE(k) and the rescaled energy flux5(k)/ln(k) are represented in
Fig. 13. The viscous and hyperviscous spectra have a remarkable different shape. On one
hand, the hyperviscous simulation shows a small power-law (inertial) region. If we examine
the energy flux, we observe a narrow dissipative subrange (i.e., where the energy flux drops).
However, the energy spectrum shows a “bump” which prevents the formation of a broad

FIG. 12. Time evolution of the kinetic energyE(t) (a) and the dissipation rateε(t) (b).
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FIG. 13. Energy spectrumE(k) (a) and compensated energy flux5(k)/ln(k) (b). In graph (a), the solid line
is the least-squares fit obtained in the inertial subrange of the hyperviscous solution (slope=−1.48± 0.05); the
dotted line is the RG prediction (slope=−1.667).

power-law region. Therefore, there is a large intermediate subrange, characterized by a con-
stant rescaled energy flux5(k)/ln(k), which depends on the dissipation mechanism. On
the other hand, the spectrum of the viscous simulation shows also a bump of less amplitude
which spans over all the range of wave-number. This bump prevents the apparition of any
power-law region. These observations may be compared with the results of Leveque and
She [15]. They have shown, for a dynamic model of turbulence, that the energy spectrum
depends on the hyperviscosity exponenth. Their interpretation of the phenomenon is the
following. Even if the energy flux (rescaled in our context) is constant, the dynamics is not
just a unidirectional energy cascade. As the energy flow reaches the dissipation cutoff, some
part is transmitted into the dissipation subrange and another part is reflected back to the
larger scales. Because of the reflected flux, the system is forced to develop large amplitude
fluctuations to enforce the correct energy flux imposed by the external forcing. However,
contrary to what Leveque and She observed in the dynamic model, the hyperviscous spec-
trum in Fig. 13(a) shows an inflection point and allows a small power-law subrange to take
place. Therefore, if the interpretation of Leveque and She applies in our case, it seems to
be “localized” in an intermediate subrange. Another explanation for the energy bump has
been given by Eyink [16, 41] who conjectured that it is related to a breakdown of locality
in the energy transfer.
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FIG. 14. Third-order structure functionS3(z) for the viscous (dotted lines) and hyperviscous (dashed lines)
Navier–Stokes simulations compared to the theoretical prediction (solid line).

We shall now investigate the properties of the flow in physical space. We define the
longitudinal velocity increments

δvL(z) = v1(x1+ z, x2, x3)− v1(x1, x2, x3).

Then the structure functionsSn(z) are given by

Sn(z) = (−1)n〈(δvL(z))
n〉,

for any integern. An exact relation forS3(z) can be derived in the limit of infinite domain
sizeL→∞ and zero (hyper)viscosityνh→ 0,

S3(z) = 6

z4

∫ z

0
FLL(r )r

4 dr, (26)

whereFLL(r ) is the two-point correlation function of the forcing given by Eq. (12). (For the
derivation of this equation, see Loitsyanskii’s integral in Monin and Yaglom [34].) Note that,
if ko→ 0, Eq. (26) becomesS3(z)= 4

5εz. Figure 14(a) compares the third structure functions
S3(z) computed from the viscous and hyperviscous simulation data with Eq. (26). The
discrepancy observed on the left side of the graph is due to the nonvanishing (hyper)viscosity
which causes an underprediction ofS3(z), while the discrepancy in the region on the right
side is due to the finiteness of the domain. For symmetry reasons,S3(z), like all odd structure
functions, crosses the abscissa axis forz=π if the domain is 0< x< 2π . The agreement
is quite good for the hyperviscous simulation. The region of good agreement defines the
inertial range in physical space. We see that for the viscous problem, we do not really have
an inertial subrange in space. (Recall that we did not have a power-law region in the energy
spectrum for that case.)

The question of the nonuniversality of the inertial range scales with respect to the dissipa-
tion mechanism can be addressed, in principle, looking at the probability density functions
(pdf’s) of the longitudinal velocity incrementδvL(z) and the lateral (or transverse) velocity
increment

δvN(z) = v2(x1+ z, x2, x3)− v2(x1, x2, x3),
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FIG. 15. Normalized probability density functions of the longitudinal velocity incrementsδvL(z): for zi =
4.91× 10−2, 9.82× 10−2, 1.96× 10−1, 3.93× 10−1: Gaussian distribution (dashed lines); viscous simulation (dot-
ted lines); hyperviscous simulation (solid lines).

for simulations with different dissipation terms. To evaluate the probability density functions
(Figs. 15 and 16), we have used space distributions, for which we have≈1.68× 107 grid
point values at each time. Using 40 different realizations, we reach a total of≈6.71× 108

values. The dotted lines (resp. solid lines) are the normalized distributions obtained for

FIG. 16. Normalized probability density functions of the transverse velocity incrementsδvN(z) for zi =
4.91× 10−2, 9.82× 10−2, 1.96× 10−1, 3.93× 10−1: Gaussian distribution (dashed lines); viscous simulation (dot-
ted lines); hyperviscous simulation (solid lines).
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the viscous (resp. hyperviscous) simulation (σ is the standard deviation). The increments
zi are chosen in the dissipative subrange and in the inertial subrange. Forz= z1 in the
hyperviscous case andz= z2, z3, z4 in both cases, these distributions display exponential
wings. Forz= z1 in the viscous case, the tails of the pdf’s decrease more slowly than
exponentially. For longitudinal increments, the negative wing is stronger than the positive
wing. For lateral increments, the distributions are symmetric. Forz= z4, a typical inertial
range scale, the pdf’s for the viscous (dotted lines) and hyperviscous (solid lines) simulations
are superimposed. Therefore, no obvious nonuniversality of the inertial range can be detected
observing the pdf’s.

If we compare our Figs. 15 and 16 with Figs. 7 and 8 of Vincent and Meneguzzi [12],
we observe a far less pronounced deviation from the Gaussian shape, which confirms the
low values obtained for the velocity derivative skewness and the flatness. In comparison
with large-scale forced turbulence, our system has a somewhat different behavior in the
dissipative subrange since, for very high wave-numbers, the local Reynolds number is very
low and our system combines a linear randomly forced Stokes problem and a weak nonlinear
interaction which is responsible for the deviation from the Gaussian distribution. Therefore,
we expect to have less strong intermittency than in large-scale forced turbulence. The pdf’s
of the viscous simulation (dotted lines) versus the hyperviscous one (solid lines) show
interesting differences in the dissipative subrange. In the hyperviscous case, the energy flux
drops very abruptly in the dissipation subrange. Therefore, we have a weaker nonlinear
effect. If we follow the explanation of dissipative scales intermittency given by Frisch
and Morf [42], this suggests that since the hyperviscosity leads to a strong damping, the
singularities in the complex plane associated to the intermittent burst occur very far from
the real axis, and occurrences very close to the real axis have extremely small probabilities.

The last result of this section is the Eulerian frequency spectrumEω(ω) defined as the
Fourier transform of the autocorrelation

B(τ ) = 〈v1(x, t + τ)v1(x, t)〉.

The autocorrelation function has been computed with a set of 60 realizations with a time
interval1t = 0.04 between each of them. The average is performed over the space domain.
We have considered only the hyperviscous simulation. The frequency spectrum is presented
in Fig. 17. The slope of the linear least-squares fit is−1.38± 0.06 and therefore supports
that the random sweeping hypothesis [20] is valid since we have approximatelyEω(ω) ∝
E(ω/vrms) (seeE(k) on Fig. 13).

6. CONCLUSIONS

We have presented two randomly forced turbulence problems, based, respectively, on the
one-dimensional Burgers equation and on the three-dimensional incompressible Navier–
Stokes equations. For both of these problems, the random forcing is chosen accordingly
to the RG theory [5, 7, 33] in order to show a Kolmogorov−5/3 energy spectrum in
the inertial subrange. The main concern of our work was to design a suitable numerical
algorithm to deal with randomly forced turbulent flows and to show some new results ob-
tained using this method. The spatial discretization is achieved by the standard Fourier
spectral method. The time integration scheme is a second-order Runge–Kutta method. The
choice of this particular scheme presents several advantages: it is more stable than the
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FIG. 17. Eulerian frequency spectrumEω(ω) (circles) and linear least-squares fit in the inertial range
(solid line). The slope of the least-squares fit is−1.38± 0.06.

second-order Adams–Bashforth scheme; dealiasing can be performed at no extra compu-
tational cost by random shifting; the scheme is readily extended to take into account an
additive noise term. A particular attention was devoted to the demonstration of the consis-
tency of the stochastic scheme. Regarding the implementation, we found that the random
number generator is a critical issue. We recommend a random number algorithm based on a
lagged Fibonacci series. For the Navier–Stokes problem, we have also considered replacing
the usual Laplacian dissipation mechanism by a high-order hyperviscous dissipation.

In agreement with the work of Chekhlov and Yakhot [22, 23], an energy spectrum∝ k−5/3

is observed for the stochastic Burgers problem in the inertial subrange. In that subrange of
wave-numbers, the energy flux is∝ ln(k). We have also investigated the spatial structure
functions Sn(z). For n= 3, there is an exact expression valid in the inertial range. The
numerical result shows very good agreement with this exact expression. The solution in
physical space exhibits very large shocks that evolve slowly. Nonetheless, analyzing the
time structure functions, we found that random sweeping is the statistically dominant effect
of the large-scale motion on the small-scales. Our simulation has been performed with the
usual viscous dissipation and our results, for various statistics, are in very good agreement
with those presented by Chekhlov and Yakhot [23] for an hyperviscous system. Contrary
to the dynamical model of Leveque and She [15], the statistical properties, in the inertial
subrange, do not show any dependence on the dissipation mechanism.

Two Navier–Stokes simulations have been performed. The first one with a normal vis-
cosity and the second one with an hyperviscosity(h= 8). The hyperviscous solution shows
a bump in the energy spectrum, but the effect appears for a limited range of scales and a
power-law inertial subrange spectrum is present. However, this spectrum does not agree
with thek−5/3 RG prediction. The third-order structure functionS3(z) is in good agreement
with the theoretical prediction for the hyperviscous simulation. We have not been able to
detect any dependence on the dissipation mechanism in the inertial subrange by comparing
the pdf’s of the longitudinal and transverse velocity increments for the two simulations.
Our calculation of the energy frequency spectrum shows a scaling law which agrees with
the random Taylor hypothesis.
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Overall, we bring to the attention of the reader that the random force method [1], applied
to turbulence, allows us to study idealized models of isotropic turbulence with nonconstant
energy flux. This family of problems, which, contrary to constant energy flux turbulence,
has not been studied extensively, should receive more interest since the nature of the energy
transfer from the mean flow to the turbulence remains an open question and it is possible
that, in the presence of strong shear, some energy is injected directly from the mean flow
to the small-scale motions of turbulence. The problems studied in this paper are isotropic
models for such a turbulence.

Another point which is worth investigating by comparing low wave-number forced turbu-
lence with inertial subrange forced turbulence is how randomness is generated in the small
scales. If we compare the solution in physical space obtained with a low wave-number
forced Burgers problem [33] with the inertial subrange forced equation presented in this
paper, we observe that the degree of randomness achieved by the small scales is only due to
the random forcing since the solution of the large-scale forcing case remains very smooth
except for the very few points where strong shocks are present. On the contrary, for the
Navier–Stokes problem, there are intrinsic instability mechanisms which contribute to the
production of randomness [43] and the random forcing comes only as a correction to
the energy flux.

APPENDIX

In this Appendix, we illustrate the Ito–Taylor expansion and we give the statement of the
proposition related to the convergence properties of the truncated Ito–Taylor series used in
Section 3. We shall assume that all the necessary derivatives and multiple integrals exist. The
simplest nontrivial Ito–Taylor expansion is obtained if we expand the functiona(s, y(s)) in
Eq. (14) using the Ito formula, Eq. (15). We derive

yl (t +1t) = yl (t)+
∫ t+1t

t
Bl j (s) dw j (s)+ al (t, y(t))1t

+ ∂tal (t, y(t))
1t2

2
+ Rl ,

with the remainder

Rl =
∫ t+1t

t

∫ s

t
∂i al (τ, y(τ ))Bi j (τ ) dw j (τ ) ds

+
∫ t+1t

t

∫ s

t
∂i al (τ, y(τ ))ai (τ, y(τ )) dτ ds

+ 1

2

∫ t+1t

t

∫ s

t
∂i ∂kal (τ, y(τ ))Bi j (τ )Bkj (τ ) dτ ds

+
∫ t+1t

t

∫ s

t
∂tal (τ, y(τ )) dτ ds.

Again, we can expand the remainder repeating the procedure of introducing the expansion
of a(s, y(s)) obtained by the Ito formula. If we iterate this procedure ad infinitum we can
write the expansion ofy(t +1t) in the general form given by Eq. (16).
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We take the truncated Ito–Taylor expansion

yk(t +1t) =
∑
α∈Lk

Iα[Cα(t, y(t))]t,t+1t .

Let us defineCl
P(R

M ,R), the space ofl times continuously differentiable functions
g : RM→R for which g and all of its partial derivatives of order up to and includingl
have polynomial growth.

PROPOSITION1. We define

Lk = {α | 3(α) ≤ k}.

Suppose thata(·, ·) and B(·) satisfy some regularity and technical properties. Then, for
each g∈C2(k+1)

P (RM ,R), there exist constants K> 0 and r∈ {1, 2, . . .} such that

|〈g( yk(t +1t))− g( y(t +1t))〉| ≤ K (1+ |y(t)|2r )1tk+1.

The complete set of hypotheses and the demonstration of this proposition is given in
Kloeden and Platen [32, Proposition 5.11.1].
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